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Abstract: Pituitary adenomas (PAs) are mostly benign endocrine tumors that can be treated by
resection or medication. However, up to 10% of PAs show an aggressive behavior with invasion of
adjacent tissue, rapid proliferation, or recurrence. Here, we provide an overview of target structures
in aggressive PAs and summarize current clinical trials including, but not limited to, PAs. Mainly,
drug targets in PAs are based on general features of tumor cells such as immune checkpoints, so that
programmed cell death 1 (ligand 1) (PD-1/PD-L1) targeting may bear potential to cure aggressive
PAs. In addition, epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR),
vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and their downstream
pathways are triggered in PAs, thereby modulating tumor cell proliferation, migration and/or tumor
angiogenesis. Temozolomide (TMZ) can be an effective treatment of aggressive PAs. Combination
of TMZ with 5-Fluorouracil (5-FU) or with radiotherapy could strengthen the therapeutic effects as
compared to TMZ alone. Dopamine agonists (DAs) are the first line treatment for prolactinomas.
Dopamine receptors are also expressed in other subtypes of PAs which renders Das potentially
suitable to treat other subtypes of PAs. Furthermore, targeting the invasive behavior of PAs could
improve therapy. In this regard, human matrix metalloproteinase (MMP) family members and
estrogens receptors (ERs) are highly expressed in aggressive PAs, and numerous studies demonstrated
the role of these proteins to modulate invasiveness of PAs. This leaves a number of treatment options
for aggressive PAs as reviewed here.

Keywords: pituitary adenomas; adjuvant treatment; hormone secretion; invasiveness; molecular
biology; proliferation

1. Introduction

Pituitary adenomas (PAs) originate from the anterior lobe of the pituitary gland and
account for about 15 per cent of all intracranial neoplasms [1]. The overwhelming majority
of PAs are benign, albeit up to 35 per cent of them exhibit locally invasive behavior [2]. Inva-
sion of PAs into the cavernous sinuses can be classified according to Hardy or Knosp [3,4].

The recently coined term “aggressive” PA refers to a clinically defined subset of tumors
that are highly proliferative or invasive and resistant to all standard treatments [5–7].
Depending on the level of specialization of the treatment center and on the exact definition
applied, such aggressive tumors may account for up to 10 per cent of cases [6]. Very rarely,
in about 0.2 per cent of cases, pituitary carcinomas, i.e., metastasizing tumors of the anterior
lobe of the pituitary gland, are encountered [8].
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PAs may lead to increased hormone secretion, hormonal insufficiency of the pituitary
gland, facial pain, and impaired function of the visual apparatus, i.e., double vision,
visual field cuts, loss of visual acuity, and even blindness [1]. Endocrine malfunction or
neurological deficiencies are indications to treat PAs [1].

Surgical resection of the tumor mass is the first line treatment for all PAs except pro-
lactinomas [1]. Patients with prolactinomas that do not respond to medical treatment or
who experience strong side effects after medical treatment should also be treated surgi-
cally [1]. Up to 90 per cent of PAs can be resected safely using a transsphenoidal approach,
guided by fluoroscopy and with the help of microsurgical techniques [1]. Pronounced
suprasellar asymmetry and retrosellar or subfrontal growth of the tumor may render a
transcranial approach more feasible [1]. The surgical treatment of PAs is continuously
being refined due to the advancement of intraoperative visualization techniques, such as
endoscopy, intraoperative computerized tomography, intraoperative magnetic resonance
imaging, and neuronavigation [9–11].

Radiation therapy is usually applied with remnants or recurrence of PAs at inoperable
sites [1]. The inherent risks of radiation therapy are rarely encountered. They comprise
tumor induction and damage to surrounding healthy tissues [1].

Obtaining clinical control of aggressive PAs remains, however, a largely unsolved
problem. While recently collected evidence demonstrates that 47 percent of aggressive
PAs respond well to the administration of the alkylating agent Temozolomide (TMZ) [6],
the majority of these life-threatening tumors still escape best medical practice. This re-
view aims to comprise and discuss other potential options to target aggressive PAs at the
molecular level.

2. Emerging Targeted Treatment Strategies at the Molecular Level

Treatment strategies can be targeted to treat either pituitary adenomas in their localized
form or as their aggressive counterparts when tumor mass is invading the surrounding tissue
(Figure 1). An overview on the target proteins and their related pathways relevant for PAs is
shown (Figure 2), and the relevant pathways are introduced in the following chapters.
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Figure 1. (a) Pituitary gland located in the sella turcica shown in coronal sections as normal pituitary
gland, benign pituitary adenoma, and as invasive pituitary adenoma. Internal carotid arteries
adjacent to the pituitary are depicted as red circles. Cavernous sinuses are depicted in light blue. Note
that aggressive PAs tend to circumvent the arteries. (b) Cellular mode of invasion into the brain tissue
depends on degradation of extracellular matrix (ECM) molecules by proteinases of the metzincin
family, namely MMPs and ADAMs. All images produced with Biorender (https://biorender.com
(accessed on 6 November 2021)).
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adenomas. As general therapeutic approaches, VEGF inhibition with Bevacizumab, EGFR inhibition
with gefitinib, the Raf/MEK/ERK pathway by inhibitors such as ASN007, mTOR pathway inhibition
with Everolimus and XL-765 as well as chemotherapy with radiation or temozolomide are discussed.
As a more specialized therapy, application of dopamine agonists such as Cabergoline and anti-
estrogens is the subject of intense research.

2.1. Dopamine Agonist (DA) Treatment, and Treatment of Excess Hormone Secretion

Dopamine modulates hormone secretion in PAs. Based on this, medication with
dopamine agonists (e.g., Cabergoline, Bromocriptine) is the first line chemotherapy treat-
ment option for patients with prolactinomas [1] due to their high expression levels of
dopamin 2 receptors (D2R). However, other PA subtypes also express D2R in varying
degrees, so that dopamine agonists may also serve as treatment options for these tumor
types including growth hormone (GH)-secreting PAs [1]. Somatostatin analogues (e.g.,
Octreotide) and the GH receptor antagonist Pegvisomant may help in cases of GH-secreting
PAs that are refractory to other treatment options [1,12]. In adrenocorticotropic hormone
(ACTH)-secreting PAs, adrenostatic drugs (e.g., Ketoconazole, Metyrapone, Mifepristone,
Osilodrostat) may lower excessive, symptomatic glucocorticoid levels [1,13,14]. Since
ACTH-secreting PAs also express somatostatin receptors (SSTRs), treatment of these tu-
mors with somatostatin analogues like Pasireotide is a valid option [13,15,16]. Dopamine
receptor (DR) expression in ACTH-secreting PAs has been described [17]. While several
case reports have demonstrated that ACTH-secreting PAs may respond to treatment with
Cabergoline [18–23], the results in larger cohorts of patients bearing such tumors still
remain controversial [24,25]. However, administration of dopamine agonists is worth
considering as an option to treat these tumors [13,14], and a clinical trial on Cabergo-
line treatment in corticotroph PAs (Mumbai, India (https://clinicaltrials.gov (accessed on
6 November 2021)) [26]; trial identifier: NCT00889525; Table 1) has been initiated.

https://clinicaltrials.gov


J. Clin. Med. 2022, 11, 124 4 of 16

Table 1. List of clinical trials related to the treatment of aggressive PAs (https://clinicaltrials.gov [26] (accessed on 6 November 2021)).

Mechanism of
Action Intervention(s) Trial

Identifier Study Title Recruitment
Status Condition Phase Number of

Enrolled Patients Study Type Primary
Purpose

checkpoint
inhibition

Ipilimumab,
Nivolumab NCT04042753

Nivolumab and Ipilimumab
in People With Aggressive

Pituitary Tumors
recruiting pituitary tumor II 21 * clinical trial treatment

checkpoint
inhibition

Ipilimumab,
Nivolumab NCT02834013

Nivolumab and Ipilimumab in
Treating Patients With Rare

Tumors
recruiting pituitary

carcinoma II 818 * clinical trial treatment

checkpoint
inhibition Pembrolizumab NCT02721732

Pembrolizumab in Treating
Patients With Rare Tumors

That Cannot Be Removed by
Surgery or Are Metastatic

active,
not recruiting pituitary tumor II 202 clinical trial treatment

dopamine agonist
treatment Cabergoline NCT03271918 Cabergoline in Nonfunctioning

Pituitary Adenomas (NFPA) completed NFPA III 140 clinical trial treatment

dopamine agonist
treatment Cabergoline NCT02288962

Dopamine Agonist Treatment
of Non-functioning Pituitary

Adenomas
recruiting NFPA III 60 * clinical trial treatment

dopamine agonist
treatment Cabergoline NCT00889525

Study of Cabergoline in
Treatment of Corticotroph

Pituitary Adenoma
completed Cushing’s disease III unknown clinical trial treatment

epidermal growth
factor receptor

(EGFR) inhibition
Lapatinib NCT00939523

Targeted Therapy With
Lapatinib in Patients With

Recurrent Pituitary Tumors
Resistant to Standard Therapy

completed pituitary tumor II 9 clinical trial treatment

epidermal growth
factor receptor

(EGFR) inhibition
Gefitinib NCT02484755

Targeted Therapy With
Gefitinib in Patients With USP8
**-mutated Cushing’s Disease

unknown Cushing’s disease II 6 * clinical trial treatment

interference with
deoxyribonucleid

acid (DNA)
replication

Temozolomide,
Radiotherapy NCT04244708

The Effect of
Chemoradiotherapy in

Patients With Refractory
Pituitary Adenomas

not yet recruiting pituitary tumor II 150 * clinical trial treatment

interference with
deoxyribonucleid

acid (DNA)
replication

Temozolomide,
Fluorouracil NCT03930771

Capecitabine and
Temozolomide for Treatment

of Recurrent Pituitary
Adenomas

terminated pituitary tumor II 1 clinical trial treatment

* estimated enrollment; ** ubiquitin specific peptidase 8.

https://clinicaltrials.gov
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The existence of D2R in non-functioning PAs (NFPAs) [27–29] justifies to consider
DA treatment as an option in residual or refractory cases of NFPAs [1]. This option has
been evaluated in several clinical studies [30–32]. Based on these results, a Brazil team
launched a randomized clinical trial to examine the efficacy of the DA Cabergoline in the
treatment of NFPA residuals after transsphenoidal surgery (São Paulo, Brazil [26]; trial
identifier: NCT03271918). Batista et al. drew the conclusion that Cabergoline was effective
in residual NFPAs [33]. Cabergoline as a treatment for refractory NFPAs is currently
being investigated in a Scandinavian multicenter study (Oslo and Trondheim, Norway;
Gothenburg, Sweden [26]; trial identifier: NCT02288962; Table 1).

2.2. Epidermal Growth Factor-Receptor (EGFR) Inhibition

Epidermal growth factor (EGF), acting through the EGF-receptor (EGFR), is a potent
modulator of cell proliferation and differentiation in a wide variety of cell types. Expression
of EGF and EGFR has been detected in both the normal pituitary gland and in PAs [34],
as well as in rat and mouse PA cell lines [35–37]. PRL secretion and gene expression,
tumor size, and tumor invasion are related to EGFR in human prolactinomas and in animal
models [38,39]. In EGF gene transfected mice, PRL secretion and tumor size have been
downregulated [40]. To attenuate EGFR pathway effects in cancers, EGFR Tyrosine kinase
inhibitors (TKIs) that bind the tyrosine kinase domain of EGFR specifically and inhibit its
activity are widely used [41,42].

Lapatinib is an ErbB1-epidermal growth factor receptor (EGFR)/ErbB2 or human
EGFR2 tyrosine kinase inhibitor that has proven efficacy in breast cancer and other solid
tumors [43]. In a recent study (Boston, USA [26]; trial identifier: NCT00939523; Table 1) on
prolactinomas that were resistant to dopamine agonist therapy, lapatinib was explored in
four patients with oral lapatinib at a dose of 1250 mg daily for up to 6 months. Although
no patient reached the endpoint criteria (40% reduction of tumor volume assessed by
MRI), three patients showed a stable disease with a 16.8% reduction of tumor diameter in
one case and with a 6% increase in 2 cases, while the remaining patient had a progressive
disease. In conclusion, lapatinib was well tolerated and caused transaminitis in two patients,
grade 2 rash in two patients and grade 1 asymptomatic bradycardia in two patients.
The investigators drew the conclusion that Lapatinib may be effective in patients with
aggressive prolactinomas [44].

At the same time, the ubiquitin specific peptidase 8 (USP8), another promising down-
stream effector of EGFR, is a potential molecular target in pituitary adenomas refractory
to standard treatment. Gefitinib, an EGFR inhibitor, showed efficacy in ACTH-secreting
PA cells of human origin, with a mutation of the USP8 gene present in the majority of
cases [45,46]. A clinical trial investigating the treatment of patients with USP8-mutated
ACTH-secreting PAs has been initiated (Shanghai, China [26]; trial identifier: NCT02484755;
Table 1).

2.3. Estrogen Receptor Modulation

In humans, two intracellular subtypes of estrogen receptors (ERs) are known: ER1,
and ER2. While the DNA binding domains of both receptors share a similar structure,
their hormone binding domains differ. Tissues with ER1 expression include bone, brain,
epididymis, hypothalamus, mammary gland, ovary, pituitary, prostatic gland, testes,
and uterus. Tissues with ER2 expression include bone marrow, brain, intestine, ovary,
prostatic gland, salivary glands, and testes [47]. The binding of ERs to hormone responsive
elements (HREs) in the promotor region of target genes induces the genomic effects of
ERs, with HREs showing partial differences between ER subtypes. Modulation of other
transcriptional factors through ERs and primarily non-genomic effects of ERs have also
been observed [48]. ER ligands may either modulate the activity of the receptor (selective
estrogen receptor modulators (SERMs)) or bind to the receptor and then degrade it (selec-
tive estrogen receptor degraders (SERDs)) [49]. Several SERMs approved to treat other



J. Clin. Med. 2022, 11, 124 6 of 16

conditions in humans have drawn the attention of scientists exploring potential salvage
therapies for aggressive PAs.

The experimental use of the SERM Bazedoxifene in rats for up to 2 years led to
a significant increase in survival and to significantly less tumors of the mammary and
pituitary glands [50]. While in vitro experiments indicate that Bazedoxifene significantly
decreases survival, invasiveness, and expression of invasion-related proteases in rodent
PA cells [51], clinical experience in treating aggressive PAs with Bazedoxifene has not yet
been reported.

Walker et al. [52] reported in 1996 on a case of hemorrhagic transformation of a GH-
secreting macroadenoma of the pituitary gland in a woman with primary infertility who
had received the SERM Clomifene. At that time, the authors assumed that Clomifene may
have induced pituitary apoplexy via an indirect increase in portal blood gonadotropic
releasing hormone levels. Taking into account results from recent in vitro investigations on
the impact of Clomifene on rodent PA cell survival [51], a direct effect of the drug on PA
cells with subsequent pituitary apoplexy is also conceivable.

In 2004, Dimaraki et al. [53] reported that a daily dose of 2 × 60 mg of the SERM
raloxifene reduced serum insulin-like growth factor (IGF)-1 levels by a small but statistically
significant amount in acromegalic men. In their hands, the rather short course of treatment
with Raloxifene (up to 6 weeks) did not result in relevant changes of the clinical presentation
or in serum levels of GH, prolactin, and testosterone. The authors supposed a direct impact
of the drug on hepatic metabolism rather than on the hypothalamic-pituitary axis. In a
recently published retrospective study, Choudhary et al. [54] investigated the efficacy of
a daily dose of 60 mg raloxifene plus dopamine agonists for up to 6 months in patients
with prolactinomas whose hormone levels did not normalize despite dopamine agonist
treatment. In 10 out of 14 patients, serum prolactin levels were reduced by 25.9 per cent on
average. In 2 out of 10 patients, normoprolactinemia was achieved. Raloxifene has been
found to decrease survival, invasiveness, and expression of invasion-related proteases in
rodent PA cells in vitro [51].

The combination of the SERM tamoxifene with dopamine agonists to treat PAs that
are refractory to standard therapies had been tried decades ago, with results that many clin-
icians considered discouraging [55,56]. Tamoxifene plus dopamine agonists led, however,
to long-term tumor control in a recently reported case of an aggressive PA which, in the
absence of ER1 expression, exhibited markedly high ER2 expression [57].

The results from in vitro experiments in rodent PA cell lines and the evidence collected
in humans indicate that SERMs may serve as a salvage therapy in aggressive PAs [51,58–60].
While membrane-bound G protein-coupled ERs are apparently involved in rodent PA
cellular signal transduction [61–64], the potential clinical implications of these findings
remain to be elucidated.

2.4. Mammalian Target of Rapamycin (mTOR) Inhibition

The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/mTOR signaling path-
way is involved in tumor cell metabolism, apoptosis, and proliferation [65]; it has been
demonstrated to be overactivated in pituitary tumors [66]. AKT expression and phospho-
rylation have also been reported to be elevated in PAs as compared to normal pituitary
gland tissue [67]. In one study, mTOR pathway activation was noted in 43% of all PA
patients’ samples, and in 71% of samples of growth hormone (GH) secreting tumors [68].
mTOR forms two major protein complexes with other protein partners, namely mTOR
complex-1 (mTORC1) and mTOR complex-2 (mTORC2). mTORC1 is formed by mTOR and
Regulatory-associated protein of mTOR (RAPTOR), whose expression was confirmed in
PAs and is correlated with invasion and tumor growth [69]. Everolimus is a first-generation
inhibitor of mTOR that binds to mTOR allosterically in a complex with FK506-binding
protein 12 (FKBP12) thereby inhibiting mTORC1 activity [70]. Everolimus has been ap-
proved for the treatment of advanced renal cell carcinoma [71]. Gorshtein, Zatelli and
colleagues [72–74] confirmed that Everolimus helps to reduce cell viability both in cell lines
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and primary human PA cells, where the PI3K/AKT/mTOR signaling pathway is involved
in the regulation of GH secretion. Donovan et al. [75] reported on widely metastatic ACTH-
secreting pituitary carcinoma in a patient carrying a serine/threonine kinase 11 (STK11)
(F298L) mutation in the mTOR pathway, and Everolimus monotherapy stabilized the dis-
ease for more than 6 months. Zhang et al. [76] combined Everolimus with Cabergoline that
led to decreased PRL levels and tumor regression after 5 months. In the future, with the
wide use of next generation-sequencing (NGS), refractory pituitary tumor patients could
be diagnosed for the PI3K/AKT/mTOR signaling pathway and, if positive, Everolimus
could be one potent treatment option.

2.5. Metalloprotease Inhibition

The human matrix metalloproteinases (MMPs) family comprises about 30 members,
including soluble secretory proteins and cell-membrane-associated proteins [77]. All mem-
bers have a conserved zinc-binding motif within the catalytic domain; it is produced
initially in an inactive form, and is converted into an active form through proteolytic
removal of the pro-domain [78]. Active forms of MMPs are well known to degrade various
components of extracellular matrices, including collagens, fibronectin, and laminins, and to
activate other MMPs [78].

A disintegrin and metalloproteinases (ADAMs) are membrane-spanning cell–cell and
cell–matrix interactive proteins. They are uniquely characterized as having a disintegrin
domain and a metalloproteinase-like domain within their molecules [79]. Some ADAMs
have a degradative activity on extracellular matrix (ECM) components such as fibronectin,
and some are known to cleave membrane proteins so that they are removed from the
cell surface.

Thus, during carcinogenesis, MMPs and ADAMs participate in several interactions
with the tumor microenvironment involving extracellular matrix (ECM), growth factors and
cytokines associated with the ECM and surrounding cells. MMPs and ADAMs play impor-
tant roles in cell proliferation, apoptosis, angiogenesis, invasion, migration, and epithelial
to mesenchymal transition (EMT) [80]. For these reasons, MMPs have been considered as
potential diagnostic and prognostic biomarkers in many types and stages of cancer [81].
However, of all MMP and ADAM family members, only some bear the potential to interfere
with cancer development. In 2005, Liu et al. [82] confirmed by immunohistochemistry that,
in human samples, MMP-2 expression is higher in PAs invading the cavernous sinuses as
compared to non-invasive PAs. Malik et al. [83] found evidence that MMP-2 may manip-
ulate oncogenic functions of the pituitary tumor transforming gene (PTTG). By contrast,
Beaulieu et al. [84] have tested 12 normal pituitary gland samples and 28 human pituitary
tumor tissue samples by Western blot and drew the conclusion that MMP-1, -2, and -3 ex-
pression levels had no correlation with tumor invasiveness. MMP-9 is another protein that
impacts tumor invasion and recurrence in PA cell lines resp. human PA samples [85–88].
By contrast, Knappe et al. [89] found no correlation between MMP-9 expression and tumor
invasion. Apart from MMP-2 and MMP-9; ADAM12, MMP-14, and ADAM10 were also
found to promote migration and to be associated with invasion in PAs [90,91].

MMP and ADAM family members have been thoroughly investigated in the past
decades. There are numerous metalloprotease inhibitors (MPIs) directed either specifically
against a limited number of MMPs or acting within a broader range. Preclinical studies
testing the efficacy of MMP suppression in tumor models were so compelling that synthetic
MPIs were rapidly developed and routed into human clinical trials. However, the results
of these trials have so far been disappointing [92]. Some drugs that are approved for other
clinical applications, like the SERM Clomiphene [51,60], may inhibit PA cell invasiveness
by affecting MMP signaling pathways.

2.6. Peptide Receptor Radionuclide Therapy (PRRT)

Peptide receptor radionuclide therapy denotes a systemic radiotherapy that allows
targeted delivery of radionuclide to tumors that show high expression of somatostatin
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receptors, usually by 2 well established radiopeptides serving as ligands of somatostatin
receptors (SSTRs) in neuroendocrine tumors. These two radiopeptides are 90Y-DOTATOC
and 177Lu-DOTATATE, so that cytotoxic doses of radionuclides may be linked to SSTR
ligands in order to treat tumors with SSTR expression. A phase III clinical trial has demon-
strated the efficacy of PRRT in advanced stages of intestinal neuroendocrine tumors [93].
PRRT with cytotoxic labeled ligands may be helpful even in the treatment of relatively
small tumors, as long as they exhibit marked SSTR expression [94]. The fact that certain
PAs overexpress SSTR [95] renders PRRT a promising option in these tumors. A case
reported by Komor et al. in 2014 demonstrated that the two radiopeptides were successful
in a patient with non-functional pituitary adenoma (WHO grade II) by stabilizing the
disease [96]. Giuffrida et al. reported in 2019 on their single center-experience with PRRT
for aggressive PAs. In their hands, 1 out of 3 patients was treated successfully with PRRT
after failure of conventional treatment [97].

2.7. Vascular Endothelial Growth Factor (VEGF) Inhibition

Notwithstanding all approaches to classify PAs, these tumors are basically solid,
and their expansion thus depends on neovascularization through angiogenesis [98,99]. This
renders vascular endothelial growth factor (VEGF) and its receptors VEGFR-1, VEGFR-2
potentially important in the treatment of aggressive PAs. As compared to normal pituitary
gland tissue, PAs can express higher levels of VEGF [100] thus qualifying an anti-VEGF
treatment using bevacizumab, a monoclonal antibody against VEGF. However, there are
only a few cases for which anti-VEGF therapy has been reported as an alternative to current
non-targeted therapies. For instance, bevacizumab has been applied in a few cases of
aggressive PAs resp. pituitary carcinomas, with a wide range of outcomes. One such
example described a patient with 7 surgeries, radiation therapy and three courses of
TMZ whose disease was stabilized upon bevacizumab administration for 26 months [101].
VEGFR-2 is the principal mediator of the VEGF-induced signal pathway. Thus, inhibition of
VEGFR-2 could be another promising strategy to down-regulate tumor angiogenesis [102].
Apatinib (YN968D1) is a small-molecule antiangiogenic agent that selectively inhibits
VEGFR-2. Wang et al. [103] reported on a successful case with a combination of Apatinib
and Temozolomide in a case of recurrent invasive PA, resulting in 31.5 months of recurrence-
free survival.

2.8. Fibroblast Growth Factor (FGF)

Tumor associated fibroblasts (TAFs) have been shown to contribute to the aggres-
siveness of PAs [104]. Secretion of cytokines, among them FGF-2, was shown to increase
invasiveness of pituitary adenoma cells and induce EMT. This secretion is a consequence of
somatostatin receptor stimulation in TAFs, so that Pasireotide, a SSTR antagonist, reduces
cytokine release from TAFs and thereby invasiveness of PA cells. FGF-2 stimulation can
be mediated via the rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein
kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway similar to EGFR
stimulation. Up to now, no clinical data are available targeting this particular pathway
in PAs.

2.9. Raf/MEK/ERK Pathway

In addition to the induction of this pathway by EGF ligands and by FGF receptor
stimulation, it has been shown that the Leucine-rich repeats and immunoglobulin-like
domains protein 1 (LRIG1) can suppress the biological function of PAs by attenuation of the
PI3K and rat sarcoma (Ras)/Raf/MEK/ERK pathway. Over-expression of LRIG1 in nude
mice resulted in reduced PA proliferation and invasion and in enhanced PA apoptosis [105].
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3. Non-Targeted Treatment
3.1. TMZ and 5-Fluorouracil (5-FU) Treatment

TMZ is an alkylating agent with a good bioavailability of almost 100% following
oral administration. The European Society of Endocrinology (ESE) has recommended
TMZ for the treatment of aggressive PAs and pituitary carcinomas after failure of surgery,
conventional medical treatments, and radiotherapy [6]. However, a positive effect of TMZ
has been observed in only 47 per cent of cases [6]. Thus, the combination of TMZ with other
effective drugs is worth considering in aggressive PAs [106]. In 2011, Thearle et al. [107]
reported on a patient with an aggressive corticotroph PA resp. pituitary carcinoma who
benefitted from the combination of Capecitabine (a prodrug of 5-FU) and TMZ. A case
series reported by Zacharia et al. [108], including 4 patients with ACTH-secreting PAs
refractory to other therapies, indicated that the combination of TMZ with 5-FU might yield
a higher success rate as compared to treatment with TMZ alone. A respective clinical trial
was initiated (New York, NY, USA [26]; trial identifier: NCT03930771; Table 1).

3.2. TMZ and Radiotherapy

TMZ bears additional potential as a radiosensitizer [109]. In patients with newly
diagnosed glioblastoma multiforme, postoperative treatment with concomitant TMZ and
radiotherapy has proven safe and efficient at the highest level of evidence, thus being
the standard therapy for these tumors since more than a decade using the Stupp protocol
75 mg/m2 daily for 6 weeks with parallel radiotherapy, followed by dosing 150–200 mg/m2

for 5 days every 28 days [110]. The ESE [106] considers concomitant TMZ and radiotherapy
as promising also in cases of aggressive PAs, which will be further investigated in a clinical
trial in the near future (Beijing, China [26]; trial identifier: NCT04244708; Table 1).

4. Checkpoint Inhibition

In rapidly growing tumors, genomic alterations may lead to dysfunction of deoxyri-
bonucleic acid (DNA) repair proteins (mismatch repair deficiency (MMRD)). MMRD fre-
quently results in hypermutation, i.e., stepwise accumulation of insertions, deletions and
alterations of short DNA sequences (microsatellites). A comparison of microsatellite length
between tumor and healthy tissue allows to detect microsatellite instability (MSI). MSI is
considered a marker for hypermutation resp. MMRD [111].

On the one hand, tumor cells with MMRD have a high tumor mutational burden
(TMB), thus presenting on their surface a variety of neo-antigens to the immune system.
Lymphocytic cell populations that have invaded the tumor tissue are called tumor infiltrat-
ing lymphocytes (TILs). In breast cancer, TILs are comprised primarily of cytotoxic (CD8+)
and helper (CD4+) T-lymphocytes, and a smaller proportion of B- and NK cells [112]. Along
with other mononuclear cells, they form the tumor immune microenvironment and play
a critical role in tumor progression. It has been shown that TILs exist in PAs [113–116].
Programmed cell death-1 (PD-1) is an immune checkpoint that is expressed predominantly
by T-lymphocytes [117].

On the other hand, immunosuppressive checkpoint ligands and cytokines, as synthe-
sized by tumor cells, attenuate the immune response by binding of the checkpoint ligand
PD-L1, which has been described in human PAs [116,118–121].

Checkpoint inhibitors (e.g., Ipilimumab, Nivolumab, Pembrolizumab) are monoclonal
antibodies that prevent checkpoint ligands to interact with the respective surface proteins
(checkpoints) of the T-lymphocytes, so that the neo-antigens may elicit an adequate response
of the immune system against the tumor cells (Figure 3).

Inhibiting the PD-1 pathway has been proven to be highly effective in lung cancer [122]
and melanomas [123] as compared to traditional chemotherapy. CTLA4 is a T-cell located
protein that can turn down the immune response in the early phase of tumor development.
Thus, using a CTLA4 antagonist could elicit anti-tumoral effects in the early phase of T cell
activation (Figure 3) [123].
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Figure 3. Immune checkpoint inhibition using anti-PD-L1 antibodies in clinical use such as nivolumab
and pembrolizumab. In addition, anti-CTLA4 therapy involving ipilimumab has also been considered
in PA treatment.

The idea to combine Ipilimumab and Nivolumab in treating aggressive PAs is sub-
stantiated [121,124] and has already prompted clinical investigation (New Jersey and New
York, NY, USA [26]; trial identifier: NCT04042753 and Bethesda, USA [26]; trial identifier:
NCT02834013; Table 1). This particular combination of checkpoint inhibitors may, however,
yield considerable side effects [125]. Furthermore, not all patients eligible for checkpoint in-
hibition actually benefit from such a treatment. In a phase II clinical trial for Pembrolizumab
(Houston, USA [26]; trial identifier: NCT02721732; Table 1), Majd et al. [126] included 4 pa-
tients with refractory PAs, 2 of whom had partial radiographic and hormonal responses
after initiation of Pembrolizumab.

There is evidence that the tumor microenvironment, rather than the origin of the
tumor, determines the efficacy of immune checkpoint inhibition [127–130]. Hypermutation
in aggressive tumors of the anterior pituitary gland has been observed [131]. Furthermore,
tumor treatment with alkylating agents, such as TMZ, may not only induce cell death,
but also lead to hypermutation in vital tumor cells [132,133].

With regard to the aforementioned drug targets and immune processes occurring
in invasive pituitary adenomas, a number of clinical trials are in progress to address the
efficacy of these drugs for the treatment of aggressive PAs. These trials are listed in Table 1.

5. Conclusions

We reviewed the most recent discoveries on treatment of aggressive pituitary ade-
nomas at the molecular level. By reviewing different molecular cues for the observed
aggressiveness of PAs, we provide a rationale for clinical interventions in aggressive pitu-
itary adenomas.
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